Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The intrinsic complexity of many mesoscale (10–100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution.more » « less
-
Abstract Specificity and activity are often at odds for natural enzymes. In this work, specificity and activity in coronazymes made of an Au nanoparticle (AuNP) and coated with DNA aptamer for glucose substrates are decoupled. By single‐molecule fluorescent MT‐HILO (magnetic tweezers coupled with highly inclined and laminated optical sheet) microscopy, it is found that this coronazyme has ≈30 times higher activity on thed‐glucose compared to bare AuNP nanozymes. Significantly, the new coronazyme demonstrates long‐range modulations by circularly polarized light (CPL) according to the matching chirality between the CPL and DNA corona, which follows the rule of chiral induced spin selectivity (CISS). Although the aptamer in the coronazyme is evolved againstd‐glucose, surprisingly, this coronazyme catalyzesl‐glucose better thand‐glucose, likely due to the faster rates for the aptamer to interact with thel‐ overd‐glucose. These results demonstrate, for the first time, an artificial enzyme with its catalytic activity controlled by short‐range intermolecular forces, whereas its chiral specificity is modulated by long‐range CPLs. This decoupled arrangement is pivotal to forge premier catalysts with activity and specificity superior to natural enzymes by separately optimizing these two properties.more » « less
-
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.more » « less
An official website of the United States government
